
Circus Documentation
Release 0.5.1

Mozilla Foundation

July 26, 2012

CONTENTS

i

ii

Circus Documentation, Release 0.5.1

Circus is a process & socket manager. It can be used to monitor and control processes and sockets.

Circus can be driven via a command-line interface or programmatically through its python API.

It shares some of the goals of Supervisord, BluePill and Daemontools. If you are curious about what Circus brings
compared to other projects, read Why should I use Circus instead of X ?.

Circus is designed using ZeroMQ. See Design for more details.

Note: Circus doesn’t secure its messages when sending information through ZeroMQ. Before running Circus, make
sure you read the Security page.

To install it, check out Installing Circus

CONTENTS 1

http://supervisord.org
https://github.com/arya/bluepill
http://cr.yp.to/daemontools.html
http://www.zeromq.org/

Circus Documentation, Release 0.5.1

2 CONTENTS

CHAPTER

ONE

RUNNING CIRCUS

Circus provides a command-line script call circusd that can be used to manage one or more watchers. Each watcher
can have one or more running processes.

Circus’ command-line tool is configurable using an ini-style configuration file. Here is a minimal example:

[circus]
check_delay = 5
endpoint = tcp://127.0.0.1:5555

[watcher:myprogram]
cmd = python
args = -u myprogram.py $WID
warmup_delay = 0
numprocesses = 5

[watcher:anotherprogram]
cmd = another_program
numprocesses = 2

The file is then run using circusd:

$ circusd example.ini

Besides processes, Circus can also bind sockets. Since every process managed by Circus is a child of the main Circus
daemon, that means any program that’s controlled by Circus can use those sockets.

Running a socket is as simple as adding a socket section in the config file:

[socket:mysocket]
host = localhost
port = 8080

To learn more about sockets, see Circus Sockets.

To understand why it’s a killer feature, read Circus stack v.s. Classical stack.

3

Circus Documentation, Release 0.5.1

4 Chapter 1. Running Circus

CHAPTER

TWO

CONTROLLING CIRCUS

Circus provides two command-line tools to manage your running daemon:

• circusctl, a management console you can use it to perform actions such as adding or removing workers

• circus-top, a top-like console you can use to display the memory and cpu usage of your running Circus.

To learn more about these, see Command-line tools

Circus also offers a small web application that can connect to a running Circus daemon and let you monitor and interact
with it.

Running the web application is as simple as adding an httpd option in the ini file:

[circus]
httpd = True

Or if you want, you can run it as a standalone process with:

$ circushttpd

By default, circushttpd runs on the 8080 port.

To learn more about this feature, see The Web Console

5

Circus Documentation, Release 0.5.1

6 Chapter 2. Controlling Circus

CHAPTER

THREE

DEVELOPING WITH CIRCUS

Circus provides high-level classes and functions that will let you manage processes in your own applications.

For example, if you want to run four processes forever, you could write:

from circus import get_arbiter

arbiter = get_arbiter("myprogram", 4)
try:

arbiter.start()
finally:

arbiter.stop()

This snippet will run four instances of myprogram and watch them for you, restarting them if they die unexpectedly.

To learn more about this, see Circus Library

7

Circus Documentation, Release 0.5.1

8 Chapter 3. Developing with Circus

CHAPTER

FOUR

EXTENDING CIRCUS

It’s easy to extend Circus to create a more complex system, by listening to all the circusd events via its pub/sub
channel, and driving it via commands.

That’s how the flapping feature works for instance: it listens to all the processes dying, measures how often it happens,
and stops the incriminated watchers after too many restarts attempts.

Circus comes with a plugin system to help you write such extensions, and a few built-in plugins you can reuse.

See The Plugin System.

9

Circus Documentation, Release 0.5.1

10 Chapter 4. Extending Circus

CHAPTER

FIVE

MORE DOCUMENTATION

5.1 Installing Circus

Use pip:

$ pip install circus

Or download the archive on PyPI, extract and install it manually with:

$ python setup.py install

If you want to try out Circus, see the Examples.

5.2 More on Requirements

Circus uses:

• Python 2.6, 2.7 (3.x needs to be tested)

• zeromq >= 2.10

And on Python side:

• pyzmq 2.2.0

• iowait 0.1

• psutil 0.4.1

You can install all the py dependencies with the pip-requirements.txt file we provide manually, or just install Circus
and have the latest versions of those libraries pulled for you:

$ pip install -r pip-requirements.txt

If you want to run the Web console you will need more things:

• Mako 0.7.0

• MarkupSafe 0.15

• bottle 0.10.9

• anyjson 0.3.1

• gevent 0.13.7

• gevent-socketio 0.3.5-beta

11

Circus Documentation, Release 0.5.1

• gevent-websocket 0.3.6

• greenlet 0.3.4

• beaker 1.6.3

• http://github.com/tarekziade/gevent-zeromq

Those can be installed with:

$ pip install -r web-requirements.txt

5.3 Configuration

Circus can be configured using an ini-style configuration file.

Example:

[circus]
check_delay = 5
endpoint = tcp://127.0.0.1:5555
pubsub_endpoint = tcp://127.0.0.1:5556
include = /path/to/configs/*.enabled.ini

[watcher:myprogram]
cmd = python
args = -u myprogram.py $(WID) $(ENV.VAR)
warmup_delay = 0
numprocesses = 5

will push in test.log the stream every 300 ms
stdout_stream.class = FileStream
stdout_stream.filename = test.log
stdout_stream.refresh_time = 0.3

[plugin:statsd]
use = circus.plugins._statsd.StatsdEmitter
host = localhost
port = 8125
sample_rate = 1.0
application_name = example

[socket:web]
host = localhost
port = 8080

5.3.1 circus - single section

endpoint The ZMQ socket used to manage Circus via circusctl. (default: tcp://127.0.0.1:5555)

pubsub_endpoint The ZMQ PUB/SUB socket receiving publications of events. (default:
tcp://127.0.0.1:5556)

stats_endpoint The ZMQ PUB/SUB socket receiving publications of stats. If not configured, this feature
is deactivated. (default: tcp://127.0.0.1:5557)

check_delay The polling interval in seconds for the ZMQ socket. (default: 5)

12 Chapter 5. More documentation

http://github.com/tarekziade/gevent-zeromq

Circus Documentation, Release 0.5.1

include List of config files to include. (default: None). You can use wildcards (*) to include particular
schemes for your files.

include_dir List of config directories. All files matching *.ini under each directory will be included.
(default: None)

stream_backend Defines the type of backend to use for the streaming. Possible values are thread or
gevent. (default: thread)

warmup_delay The interval in seconds between two watchers start. (default: 0)

httpd If set to True, Circus runs the circushttpd daemon. (default: False)

httpd_host The host ran by the circushttpd daemon. (default: localhost)

httpd_port The port ran by the circushttpd daemon. (default: 8080)

debug If set to True, all Circus stout/stderr daemons are redirected to circusd stdout/stderr (default: False)

Note: If you use the gevent backend for stream_backend, you need to install the forked version of gevent_zmq that’s
located at https://github.com/tarekziade/gevent-zeromq because it contains a fix that has not made it upstream yet.

5.3.2 watcher:NAME - as many sections as you want

NAME The name of the watcher. This name is used in circusctl

cmd The executable program to run.

args Command-line arguments to pass to the program. You can use the python format syntax here to build
the parameters. Environment variables are available, as well as the worker id and the environment
variables that you passed, if any, with the “env” parameter. See Formating the commands and
arguments with dynamic variables for more information on this.

shell If True, the processes are run in the shell (default: False)

working_dir The working dir for the processes (default: None)

uid The user id or name the command should run with. (The current uid is the default).

gid The group id or name the command should run with. (The current gid is the default).

env The environment passed to the processes (default: None)

copy_env If set to true, the local environment variables will be copied and passed to the workers when
spawning them. (Default: False)

warmup_delay The delay (in seconds) between running processes.

numprocesses The number of processes to run for this watcher.

rlimit_LIMIT Set resource limit LIMIT for the watched processes. The config name should match
the RLIMIT_* constants (not case sensitive) listed in the Python resource module reference. For
example, the config line ‘rlimit_nofile = 500’ sets the maximum number of open files to 500.

stderr_stream.class A fully qualified Python class name that will be instanciated, and will receive the
stderr stream of all processes in its __call__() method.

Circus provides two classes you can use without prefix:

• FileStream: writes in a file

• QueueStream: write in a memory Queue

5.3. Configuration 13

https://github.com/tarekziade/gevent-zeromq
http://docs.python.org/library/resource.html#resource-limits

Circus Documentation, Release 0.5.1

• StdoutStream: writes in the stdout

stderr_stream.* All options starting with stderr_stream. other than class will be passed the constructor
when creating an instance of the class defined in stderr_stream.class.

stdout_stream.class A fully qualified Python class name that will be instanciated, and will receive the
stdout stream of all processes in its __call__() method. Circus provides two classes you can
use without prefix:

• FileStream: writes in a file

• QueueStream: write in a memory Queue

• StdoutStream: writes in the stdout

stdout_stream.* All options starting with stdout_stream. other than class will be passed the constructor
when creating an instance of the class defined in stdout_stream.class.

send_hup if True, a process reload will be done by sending the SIGHUP signal. Defaults to False.

max_retry The number of times we attempt to start a process, before we abandon and stop the whole
watcher. Defaults to 5.

priority Integer that defines a priority for the watcher. When the Arbiter do some operations on all
watchers, it will sort them with this field, from the bigger number to the smallest. Defaults to 0.

singleton If set to True, this watcher will have at the most one process. Defaults to False.

use_sockets If set to True, this watcher will be able to access defined sockets via their file descriptors. If
False, all parent fds are closed when the child process is forked. Defaults to False.

5.3.3 plugin:NAME - as many sections as you want

use The fully qualified name that points to the plugin class.

anything else Every other key found in the section is passed to the plugin constructor in the config
mapping.

5.3.4 socket:NAME - as many sections as you want

host The host of the socket. Defaults to ‘localhost’

port The port. Defaults to 8080.

family The socket family. Can be ‘AF_UNIX’, ‘AF_INET’ or ‘AF_INET6’. Defaults to ‘AF_INET’.

type The socket type. Can be ‘SOCK_STREAM’, ‘SOCK_DGRAM’, ‘SOCK_RAW’, ‘SOCK_RDM’
or ‘SOCK_SEQPACKET’. Defaults to ‘SOCK_STREAM’.

Once a socket is created, the ${socket:NAME} string can be used in the command of a watcher. Circus will replace it
by the FD value.

5.3.5 Formating the commands and arguments with dynamic variables

As you may have seen, it is possible to pass some information that are computed dynamically when running the
processes. Among other things, you can get the worker id (WID) and all the options that are passed to the Process.
Additionally, it is possible to access the options passed to the Watcher which instanciated the process.

For instance, if you want to access some variables that are contained in the environment, you would need to do it with
a setting like this:

14 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

cmd = "make-me-a-coffee --sugar $(CIRCUS.ENV.SUGAR_AMOUNT)"

This works with both cmd and args.

Important:

• All variables are prefixed with circus.

• The replacement is case insensitive.

5.4 Command-line tools

5.4.1 circus-top

circus-top is a top-like console you can run to watch live your running Circus system. It will display the CPU, Memory
usage and socket hits if you have some.

Example of output:

circusd-stats
PID CPU (%) MEMORY (%)

14252 0.8 0.4
0.8 (avg) 0.4 (sum)

dummy
PID CPU (%) MEMORY (%)

14257 78.6 0.1
14256 76.6 0.1
14258 74.3 0.1
14260 71.4 0.1
14259 70.7 0.1

74.32 (avg) 0.5 (sum)

--

circus-top is a read-only console. If you want to interact with the system, use circusctl.

5.4.2 circusctl

circusctl can be used to run any command listed in Commands . For example, you can get a list of all the watchers,
you can do

$ circusctl list

5.5 Commands

At the epicenter of circus lives the command systems. circusctl is just a zeromq client, and if needed you can drive
programmaticaly the Circus system by writing your own zmq client.

All messages are Json mappings.

For each command below, we provide a usage example with circusctl but also the input / output zmq messages.

5.4. Command-line tools 15

Circus Documentation, Release 0.5.1

5.5.1 circus-ctl commands

• add: Add a watcher

• decr: Decrement the number of processes in a watcher

• dstats: Get circusd stats

• get: Get the value of a watcher option

• globaloptions: Get the arbiter options

• incr: Increment the number of processes in a watcher

• list: Get list of watchers or processes in a watcher

• listen: Suscribe to a watcher event

• listsockets: Get the list of sockets

• numprocesses: Get the number of processes

• numwatchers: Get the number of watchers

• options: Get the value of a watcher option

• quit: Quit the arbiter immediately

• reload: Reload the arbiter or a watcher

• restart: Restart the arbiter or a watcher

• rm: Remove a watcher

• set: Set a watcher option

• signal: Send a signal

• start: Start the arbiter or a watcher

• stats: Get process infos

• status: Get the status of a watcher or all watchers

• stop: Stop the arbiter or a watcher

Add a watcher

This command add a watcher dynamically to a arbiter.

ZMQ Message

{
"command": "add",
"properties": {

"cmd": "/path/to/commandline --option"
"name": "nameofwatcher"
"args": [],
"options": {},
"start": false

}
}

A message contains 2 properties:

16 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

• cmd: Full command line to execute in a process

• args: array, arguments passed to the command (optional)

• name: name of watcher

• options: options of a watcher

• start: start the watcher after the creation

The response return a status “ok”.

Command line

$ circusctl add [--start] <name> <cmd>

Options

• <name>: name of the watcher to create

• <cmd>: full command line to execute in a process

• –start: start the watcher immediately

Decrement the number of processes in a watcher

This comment decrement the number of processes in a watcher by -1.

ZMQ Message

{
"command": "decr",
"propeties": {

"name": "<watchername>"
"nb": <nbprocess>

}
}

The response return the number of processes in the ‘numprocesses‘ property:

{ "status": "ok", "numprocesses": <n>, "time", "timestamp" }

Command line

$ circusctl descr <name> [<nbprocess>]

Options

• <name>: name of the watcher

• <nbprocess>: the number of processes to remove.

5.5. Commands 17

Circus Documentation, Release 0.5.1

Get circusd stats

You can get at any time some statistics about circusd with the dstat command.

ZMQ Message

To get the circusd stats, simply run:

{
"command": "dstats"

}

The response returns a mapping the property “infos” containing some process informations:

{
"info": {
"children": [],
"cmdline": "python",
"cpu": 0.1,
"ctime": "0:00.41",
"mem": 0.1,
"mem_info1": "3M",
"mem_info2": "2G",
"nice": 0,
"pid": 47864,
"username": "root"

},
"status": "ok",
"time": 1332265655.897085

}

Command Line

$ circusctl dstats

Get the value of a watcher option

This command return the watchers options values asked.

ZMQ Message

{
"command": "get",
"properties": {

"keys": ["key1, "key2"]
"name": "nameofwatcher"

}
}

A response contains 2 properties:

• keys: list, The option keys for which you want to get the values

• name: name of watcher

18 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

The response return an object with a property “options” containing the list of key/value returned by circus.

eg:

{
"status": "ok",
"options": {

"flapping_window": 1,
"times": 2

},
time’: 1332202594.754644

}

See Optios for for a description of options enabled?

Command line

$ circusctl get <name> <key> <value> <key1> <value1>

Get the arbiter options

This command return the arbiter options

ZMQ Message

{
"command": "globaloptions",
"properties": {

"key1": "val1",
..

}
}

A message contains 2 properties:

• keys: list, The option keys for which you want to get the values

The response return an object with a property “options” containing the list of key/value returned by circus.

eg:

{
"status": "ok",
"options": {

"check_delay": 1,
...

},
time’: 1332202594.754644

}

Command line

$ circusctl globaloptions

5.5. Commands 19

Circus Documentation, Release 0.5.1

Options

Options Keys are:

• endpoint: the controller ZMQ endpoint

• pubsub_endpoint: the pubsub endpoint

• check_delay: the delay between two controller points

Increment the number of processes in a watcher

This comment increment the number of processes in a watcher by +1.

ZMQ Message

{
"command": "incr",
"properties": {

"name": "<watchername>",
"nb": <nbprocess>

}
}

The response return the number of processes in the ‘numprocesses‘ property:

{ "status": "ok", "numprocesses": <n>, "time", "timestamp" }

Command line

$ circusctl incr <name> [<nbprocess>]

Options

• <name>: name of the watcher.

• <nbprocess>: the number of processes to add.

Get list of watchers or processes in a watcher

ZMQ Message

To get the list of all the watchers:

{
"command": "list",

}

To get the list of active processes in a watcher:

20 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

{
"command": "list",
"properties": {

"name": "nameofwatcher",
}

}

The response return the list asked. the mapping returned can either be ‘watchers’ or ‘pids’ depending the request.

Command line

$ circusctl list [<name>]

Suscribe to a watcher event

ZMQ

At any moment you can suscribe to circus event. Circus provide a PUB/SUB feed on which any clients can suscribe.
The suscriber endpoint URI is set in the circus.ini configuration file.

Events are pubsub topics:

Events are pubsub topics:

• watcher.<watchername>.reap: when a process is reaped

• watcher.<watchername>.spawn: when a process is spawned

• watcher.<watchername>.kill: when a process is killed

• watcher.<watchername>.updated: when watcher configuration is updated

• watcher.<watchername>.stop: when a watcher is stopped

• watcher.<watchername>.start: when a watcher is started

All events messages are in a json.

Command line

The client has been updated to provide a simple way to listen on the events:

circusctl list [<topic>, ...]

Example of result:
$ circusctl listen tcp://127.0.0.1:5556
watcher.refuge.spawn: {u’process_id’: 6, u’process_pid’: 72976,

u’time’: 1331681080.985104}
watcher.refuge.spawn: {u’process_id’: 7, u’process_pid’: 72995,

u’time’: 1331681086.208542}
watcher.refuge.spawn: {u’process_id’: 8, u’process_pid’: 73014,

u’time’: 1331681091.427005}

5.5. Commands 21

Circus Documentation, Release 0.5.1

Get the list of sockets

ZMQ Message

To get the list of sockets:

{
"command": "listsockets",

}

The response return a list of json mappings with keys for fd, name, host and port.

Command line

$ circusctl listsockets

Get the number of processes

Get the number of processes in a watcher or in a arbiter

ZMQ Message

{
"command": "numprocesses",
"propeties": {

"name": "<watchername>"
}

}

The response return the number of processes in the ‘numprocesses‘ property:

{ "status": "ok", "numprocesses": <n>, "time", "timestamp" }

If the property name isn’t specified, the sum of all processes managed is returned.

Command line

$ circusctl numprocesses [<name>]

Options

• <name>: name of the watcher

Get the number of watchers

Get the number of watchers in a arbiter

22 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

ZMQ Message

{
"command": "numwatchers",

}

The response return the number of watchers in the ‘numwatchers‘ property:

{ "status": "ok", "numwatchers": <n>, "time", "timestamp" }

Command line

$ circusctl numwatchers

Get the value of a watcher option

This command return the watchers options values asked.

ZMQ Message

{
"command": "options",
"properties": {

"name": "nameofwatcher",
}

}

A message contains 1 property:

• name: name of watcher

The response return an object with a property “options” containing a dictionary of key/value returned by circus.

eg:

{
"status": "ok",
"options": {

"flapping_window": 1,
"flapping_attempts": 2,
...

},
time’: 1332202594.754644

}

Command line

$ circusctl options <name>

5.5. Commands 23

Circus Documentation, Release 0.5.1

Options

• <name>: name of the watcher

Options Keys are:

• numprocesses: integer, number of processes

• warmup_delay: integer or number, delay to wait between process spawning in seconds

• working_dir: string, directory where the process will be executed

• uid: string or integer, user ID used to launch the process

• gid: string or integer, group ID used to launch the process

• send_hup: boolean, if TRU the signal HUP will be used on reload

• shell: boolean, will run the command in the shell environment if true

• cmd: string, The command line used to launch the process

• env: object, define the environnement in which the process will be launch

• flapping_attempts: integer, number of times we try to relaunch a process in the flapping_window time before
we stop the watcher during the retry_in time.

• flapping_window: integer or number, times in seconds in which we test the number of process restart.

• retry_in: integer or number, time in seconds we wait before we retry to launch the process if the maximum
number of attempts has been reach.

• max_retry: integer, The maximum of retries loops

• graceful_timeout: integer or number, time we wait before we definitely kill a process.

• priority: used to sort watchers in the arbiter

• singleton: if True, a singleton watcher.

Quit the arbiter immediately

When the arbiter receive this command, the arbiter exit.

ZMQ Message

{
"command": "quit"

}

The response return the status “ok”.

Command line

$ circusctl quit

24 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

Reload the arbiter or a watcher

This command reload all the process in a watcher or all watchers. If a the option send_hup is set to true in a watcher
then the HUP signal will be sent to the process.A graceful reload follow the following process:

1. Send a SIGQUIT signal to a process

2. Wait until graceful timeout

3. Send a SIGKILL signal to the process to make sure it is finally killed.

ZMQ Message

{
"command": "reload",
"propeties": {

"name": ’<name>",
"graceful": true

}
}

The response return the status “ok”. If the property graceful is set to true the processes will be exited gracefully.

If the property name is present, then the reload will be applied to the watcher.

Command line

$ circusctl reload [<name>] [--terminate]

Options

• <name>: name of the watcher

• –terminate; quit the node immediately

Restart the arbiter or a watcher

This command restart all the process in a watcher or all watchers. This funtion simply stop a watcher then restart it.

ZMQ Message

{
"command": "restart",
"propeties": {

"name": ’<name>"
}

}

The response return the status “ok”.

If the property name is present, then the reload will be applied to the watcher.

5.5. Commands 25

Circus Documentation, Release 0.5.1

Command line

$ circusctl restart [<name>] [--terminate]

Options

• <name>: name of the watcher

• –terminate; quit the node immediately

Remove a watcher

This command remove a watcher dynamically from the arbiter. The watchers are gracefully stopped.

ZMQ Message

{
"command": "rm",
"properties": {

"name": "nameofwatcher",
}

}

A message contains 1 property:

• name: name of watcher

The response return a status “ok”.

Command line

$ circusctl rm <name>

Options

• <name>: name of the watcher to create

Set a watcher option

ZMQ Message

{
"command": "set",
"properties": {

"name": "nameofwatcher",
"options": {

"key1": "val1",
}
..

}
}

26 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

The response return the status “ok”. See the command Options for a list of key to set.

Command line

$ circusctl set <name> <key1> <value1> <key2> <value2>

Send a signal

This command allows you to send a signal to all processes in a watcher, a specific process in a watcher or its children.

ZMQ Message

To send a signal to all the processes for a watcher:

{
"command": "signal",
"property": {

"name": <name>,
"signum": <signum>

}

To send a signal to a process:

{
"command": "signal",
"property": {

"name": <name>,
"pid": <processid>,
"signum": <signum>

}

An optional property “children” can be used to send the signal to all the children rather than the process itself:

{
"command": "signal",
"property": {

"name": <name>,
"pid": <processid>,
"signum": <signum>,
"children": True

}

To send a signal to a process child:

{
"command": "signal",
"property": {

"name": <name>,
"pid": <processid>,
"signum": <signum>,
"child_pid": <childpid>,

}

It is also possible to send a signal to all the processes of the watcher and its childs:

5.5. Commands 27

Circus Documentation, Release 0.5.1

{
"command": "signal",
"property": {

"name": <name>,
"signum": <signum>,
"children": True

}

Command line

$ circusctl signal <name> [<process>] [<pid>] [--children] <signum>

Options:

• <name>: the name of the watcher

• <pid>: integer, the process id.

• <signum>: the signal number to send.

• <childpid>: the pid of a child, if any

• <children>: boolean, send the signal to all the children

Allowed signals are:

• 3: QUIT

• 15: TERM

• 9: KILL

• 1: HUP

• 21: TTIN

• 22: TTOU

• 30: USR1

• 31: USR2

Start the arbiter or a watcher

This command starts all the processes in a watcher or all watchers.

ZMQ Message

{
"command": "start",
"properties": {

"name": ’<name>",
}

}

The response return the status “ok”.

If the property name is present, the watcher will be started.

28 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

Command line

$ circusctl start [<name>]

Options

• <name>: name of the watcher

Get process infos

You can get at any time some statistics about your processes with teh stat command.

ZMQ Message

To get stats for all watchers:

{
"command": "stats"

}

To get stats for a watcher:

{
"command": "stats",
"properties": {

"name": <name>
}

}

To get stats for a process:

{
"command": "stats",
"properties": {

"name": <name>,
"process": <processid>

}
}

The response retun an object per process with the property “info” containing some process informations:

{
"info": {
"children": [],
"cmdline": "python",
"cpu": 0.1,
"ctime": "0:00.41",
"mem": 0.1,
"mem_info1": "3M",
"mem_info2": "2G",
"nice": 0,
"pid": 47864,
"username": "root"

},
"process": 5,
"status": "ok",

5.5. Commands 29

Circus Documentation, Release 0.5.1

"time": 1332265655.897085
}

Command Line

$ circusctl stats [<watchername>] [<processid>]

Get the status of a watcher or all watchers

This command start get the status of a watcher or all watchers.

ZMQ Message

{
"command": "status",
"properties": {

"name": ’<name>",
}

}

The response return the status “active” or “stopped” or the status / watchers.

Command line

$ circusctl status [<name>]

Options

• <name>: name of the watcher

Example
$ circusctl status dummy
active
$ circusctl status
dummy: active
dummy2: active
refuge: active

Stop the arbiter or a watcher

This command stop all the process in a watcher or all watchers.

ZMQ Message

30 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

{
"command": "stop",
"propeties": {

"name": ’<name>",
}

}

The response return the status “ok”.

If the property name is present, then the reload will be applied to the watcher.

Command line

$ circusctl stop [<name>]

Options

• <name>: name of the watcher

5.6 The Web Console

Circus comes with a Web Console that can be used to manage the system.

The Web Console lets you:

• Connect to any running Circus system

• Watch the processes CPU and Memory usage in real-time

• Add or kill processes

• Add new watchers

Note: The real-time CPU & Memory usage feature uses the stats socket. If you want to activate it, make sure the
Circus system you’ll connect to has the stats enpoint enabled in its configuration:

[circus]
...
stats_endpoint = tcp://127.0.0.1:5557
...

By default, this option is not activated.

The web console needs a few dependencies that you can install them using the web-requirements.txt file. Additionally,
you will need to have gevent (and thus libevent) installed on your system to make this working:

$ bin/pip install -r web-requirements.txt

To enable the console, add a few options in the Circus ini file:

[circus]
httpd = True
httpd_host = localhost
httpd_port = 8080

5.6. The Web Console 31

Circus Documentation, Release 0.5.1

httpd_host and httpd_port are optional, and default to localhost and 8080.

If you want to run the web app on its own, just run the circushttpd script:

$ circushttpd
Bottle server starting up...
Listening on http://localhost:8080/
Hit Ctrl-C to quit.

By default the script will run the Web Console on port 8080, but the –port option can be used to change it.

32 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

5.6.1 Using the console

Once the script is running, you can open a browser and visit http://localhost:8080. You should get this screen:

The Web Console is ready to be connected to a Circus system, given its endpoint. By default the endpoint is
tcp://127.0.0.1:5555.

Once you hit Connect, the web application will connect to the Circus system.

With the Web Console logged in, you should get a list of watchers, and
a real-time status of the two Circus processes (circusd and circusd-stats).

5.6. The Web Console 33

Circus Documentation, Release 0.5.1

You can click on the status of each watcher to toggle it from Active (green) to Inactive (red). This change is effective
immediatly and let you start & stop watchers.

If you click on the watcher name, you will get a web page for that particular watcher, with its processes:

34 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

On this screen, you can add or remove processes, and kill existing ones.

Last but not least, you can add a brand new watcher by clicking on the Add Watcher link in the left menu:

5.6.2 Embedding circushttpd into Circus

circushttpd is a WSGI application so you can run it with any web server that’s compatible with that protocol. By
default it uses the standard library wsgiref server, but that server does not really support any load.

You can use Chaussette to bind a WSGI server and have circushttpd managed by Circus itself.

To do so, make sure Chaussette is installed:

$ pip install chaussette

Then add a new watcher and a socket sections in your ini file:

[watcher:webconsole]
cmd = chaussette --fd $(circus.sockets.webconsole) circus.web.circushttpd.app
singleton = 1
use_sockets = 1

[socket:webconsole]
host = 127.0.0.0
port = 8080

That’s it !

5.6.3 Running behind Nginx

Nginx can act as a proxy in front of Circus. It an also deal with security.

5.6. The Web Console 35

http://chaussette.readthedocs.org

Circus Documentation, Release 0.5.1

To hook Nginx, you define a location directive that proxies the calls to Circus.

Example:

location ~/media/*(.jpg|.css|.js)$ {
alias /path/to/circus/web/;

}

location / {
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;
proxy_redirect off;
proxy_pass http://127.0.0.1:8080;

}

If you want more configuration options, see http://wiki.nginx.org/HttpProxyModule.

5.6.4 Password-protect circushttpd

As explained in the Security page, running circushttpd is pretty unsafe. We don’t provide any security in Circus itself,
but you can protect your console at the NGinx level, by using http://wiki.nginx.org/HttpAuthBasicModule

Example:

location / {
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;
proxy_redirect off;
proxy_pass http://127.0.0.1:8080;
auth_basic "Restricted";
auth_basic_user_file /path/to/htpasswd;

}

The htpasswd file contains users and their passwords, and a password prompt will pop when you access the console.

You can use Apache’s htpasswd script to edit it, or the Python script they provide at:
http://trac.edgewall.org/browser/trunk/contrib/htpasswd.py

Of course that’s just one way to protect your web console, you could use many other techniques.

5.6.5 Extending the web console

We picked bottle to build the webconsole, mainly because it’s a really tiny framework that doesn’t do much. By having
a look at the code of the web console, you’ll eventually find out that it’s really simple to understand.

Here is how it’s split:

• The circushttpd.py file contains the “views” definitions and some code to handle the socket connection (via
socketio).

• the controller.py contains a single class which is in charge of doing the communication with the circus controller.
It allows to have a nicer high level API when defining the web server.

If you want to add a feature in the web console you can reuse the code that’s existing. A few tools are at your disposal
to ease the process:

• There is a render_template function, which takes the named arguments you pass to it and pass them to the
template renderer and return the resulting HTML. It also passes some additional variables, such as the session,
the circus version and the client if defined.

36 Chapter 5. More documentation

http://wiki.nginx.org/HttpProxyModule
http://wiki.nginx.org/HttpAuthBasicModule
http://trac.edgewall.org/browser/trunk/contrib/htpasswd.py

Circus Documentation, Release 0.5.1

• If you want to run commands and doa redirection depending the result of it, you can use the run_command
function, which takes a callable as a first argument, a message in case of success and a redirection url.

The StatsNamespace class is responsible for managing the websocket communication on the server side. Its
documentation should help you to understand what it does.

5.7 Circus Sockets

Circus can bind network sockets and manage them as it does for processes.

The main idea is that a child process that’s created by Circus to run one of the watcher’s command can inherit from all
the opened file descriptors.

That’s how Apache or Unicorn works, and many other tools out there.

5.7.1 Goal

The goal of having sockets managed by Circus is to be able to manage network applications in Circus exactly like
other applications.

For example, if you use Circus with Chaussette – a WGSI server, you can get a very fast web server running and
manage “Web Workers” in Circus as you would do for any other process.

Splitting the socket managment from the network application itself offers a lot of opportunities to scale and manage
your stack.

5.7.2 Design

The gist of the feature is done by binding the socket and start listening to it in circusd:

import socket

sock = socket.socket(FAMILY, TYPE)
sock.bind((HOST, PORT))
sock.listen(BACKLOG)
fd = sock.fileno()

Circus then keeps track of all the opened fds, and let the processes it runs as children have access to them if they want.

If you create a small Python network script that you intend to run in Circus, it could look like this:

import socket
import sys

fd = int(sys.argv[1]) # getting the FD from circus
sock = socket.fromfd(fd, FAMILY, TYPE)

dealing with one request at a time
while True:

conn, addr = sock.accept()
request = conn.recv(1024)
.. do something ..
conn.sendall(response)
conn.close()

Then Circus could run like this:

5.7. Circus Sockets 37

http://chaussette.rtfd.org

Circus Documentation, Release 0.5.1

[circus]
check_delay = 5
endpoint = tcp://127.0.0.1:5555
pubsub_endpoint = tcp://127.0.0.1:5556
stats_endpoint = tcp://127.0.0.1:5557

[watcher:dummy]
cmd = mycoolscript $(circus.sockets.foo)
use_sockets = True
warmup_delay = 0
numprocesses = 5

[socket:foo]
host = 127.0.0.1
port = 8888

$(circus.sockets.foo) will be replaced by the FD value once the socket is created and bound on the 8888 port.

5.7.3 Real-world example

Chaussette is the perfect Circus companion if you want to run your WSGI application.

Once it’s installed, running 5 meinheld workers can be done by creating a socket and calling the chaussette command
in a worker, like this:

[circus]
endpoint = tcp://127.0.0.1:5555
pubsub_endpoint = tcp://127.0.0.1:5556
stats_endpoint = tcp://127.0.0.1:5557

[watcher:web]
cmd = chaussette --fd $(circus.sockets.web) --backend meinheld mycool.app
use_sockets = True
numprocesses = 5

[socket:web]
host = 0.0.0.0
port = 8000

We did not publish benchmarks yet, but a Web cluster managed by Circus with a Gevent or Meinheld backend is as
fast as any pre-fork WSGI server out there.

5.7.4 Circus stack v.s. Classical stack

In a classical WSGI stack, you have a server like Gunicorn that serves on a port or an unix socket and is usually
deployed behind a web server like Nginx:

38 Chapter 5. More documentation

http://chaussette.rtfd.org

Circus Documentation, Release 0.5.1

Clients call Nginx, which reverse proxies all the calls to Gunicorn.

If you want to make sure the Gunicorn process stays up and running, you have to use a program like Supervisord or
upstart.

Gunicorn in turn watches for its processes (“workers”).

In other words you are using two levels of process managment. One that you manage and control (supervisord), and a
second one that you have to manage in a different UI, with a different philosophy and less control over what’s going
on (the wsgi server’s one)

This is true for Gunicorn and most multi-processes WSGI servers out there I know about. uWsgi is a bit different as it
offers plethoras of options.

But if you want to add a Redis server in your stack, you will end up with managing your stack processes in two
different places.

Circus’ approach on this is to manage processes and sockets.

A Circus stack can look like this:

5.7. Circus Sockets 39

Circus Documentation, Release 0.5.1

So, like Gunicorn, Circus is able to bind a socket that will be proxied by Nginx. Circus don’t deal with the requests
but simply binds the socket. It’s then up to a web worker process to accept connections on the socket and do the work.

It provides equivalent features than Supervisord but will also let you manage all processes at the same level, wether
they are web workers or Redis or whatever. Adding a new web worker is done exactly like adding a new Redis process.

5.8 Benches

We did a few benches to compare Circus & Chaussette with Gunicorn. To summarize, Circus is not adding any
overhead and you can pick up many different backends for your web workers.

See:

• http://blog.ziade.org/2012/06/28/wgsi-web-servers-bench

• http://blog.ziade.org/2012/07/03/wsgi-web-servers-bench-part-2

40 Chapter 5. More documentation

http://blog.ziade.org/2012/06/28/wgsi-web-servers-bench
http://blog.ziade.org/2012/07/03/wsgi-web-servers-bench-part-2

Circus Documentation, Release 0.5.1

5.9 Circus Library

The Circus package is composed of a high-level get_arbiter() function and many classes. In most cases, using
the high-level function should be enough, as it creates everything that is needed for Circus to run.

You can subclass Circus’ classes if you need more granularity than what is offered by the configuration.

5.9.1 The get_arbiter function

get_arbiter() is just a convenience on top of the various circus classes. It creates a arbiter (class Arbiter)
instance with the provided options, which in turn runs a single Watcher with a single Process.

circus.get_arbiter(watchers, controller=’tcp://127.0.0.1:5555’, pub-
sub_endpoint=’tcp://127.0.0.1:5556’, stats_endpoint=None, env=None,
name=None, context=None, background=False, stream_backend=’thread’,
plugins=None)

Creates a Arbiter and a single watcher in it.

Options:

•watchers – a list of watchers. A watcher in that case is a dict containing:

–name – the name of the watcher (default: None)

–cmd – the command line used to run the Watcher.

–args – the args for the command (list or string).

–executable – When executable is given, the first item in the args sequence obtained from cmd is
still treated by most programs as the command name, which can then be different from the actual
executable name. It becomes the display name for the executing program in utilities such as ps.

–numprocesses – the number of processes to spawn (default: 1).

–warmup_delay – the delay in seconds between two spawns (default: 0)

–shell – if True, the processes are run in the shell (default: False)

–working_dir - the working dir for the processes (default: None)

–uid – the user id used to run the processes (default: None)

–gid – the group id used to run the processes (default: None)

–env – the environment passed to the processes (default: None)

–send_hup: if True, a process reload will be done by sending the SIGHUP signal. (default: False)

–stdout_stream: a mapping containing the options for configuring the stdout stream. Default to None.
When provided, may contain:

*class: the fully qualified name of the class to use for streaming. Defaults to cir-
cus.stream.FileStream

*refresh_time: the delay between two stream checks. Defaults to 0.3 seconds.

*any other key will be passed the class constructor.

–stderr_stream: a mapping containing the options for configuring the stderr stream. Default to None.
When provided, may contain:

*class: the fully qualified name of the class to use for streaming. Defaults to cir-
cus.stream.FileStream

5.9. Circus Library 41

Circus Documentation, Release 0.5.1

*refresh_time: the delay between two stream checks. Defaults to 0.3 seconds.

*any other key will be passed the class constructor.

–max_retry: the number of times we attempt to start a process, before we abandon and stop the whole
watcher. (default: 5)

•controller – the zmq entry point (default: ‘tcp://127.0.0.1:5555‘)

•pubsub_endpoint – the zmq entry point for the pubsub (default: ‘tcp://127.0.0.1:5556‘)

•stats_endpoint – the stats endpoint. If not provided, the circusd-stats process will not be launched. (de-
fault: None)

•context – the zmq context (default: None)

•background – If True, the arbiter is launched in a thread in the background (default: False)

•stream_backend – the backend that will be used for the streaming process. Can be thread or gevent.
When set to gevent you need to have gevent and gevent_zmq installed. (default: thread)

•plugins – a list of plugins. Each item is a mapping with:

–use – Fully qualified name that points to the plugin class

–every other value is passed to the plugin in the config option

Example:

from circus import get_arbiter

arbiter = get_arbiter("myprogram", numprocesses=3)
try:

arbiter.start()
finally:

arbiter.stop()

5.9.2 The classes collection

Circus provides a series of classes you can use to implement your own process manager:

• Process: wraps a running process and provides a few helpers on top of it.

• Watcher: run several instances of Process against the same command. Manage the death and life of pro-
cesses.

• Arbiter: manages several Watcher.

class circus.process.Process(wid, cmd, args=None, working_dir=None, shell=False,
uid=None, gid=None, env=None, rlimits=None, executable=None,
use_fds=False, watcher=None, spawn=True)

Wraps a process.

Options:

•wid: the process unique identifier. This value will be used to replace the $WID string in the command line
if present.

•cmd: the command to run. May contain any of the variables available that are being passed to this class.
They will be replaced using the python format syntax.

•args: the arguments for the command to run. Can be a list or a string. If args is a string, it’s splitted using
shlex.split(). Defaults to None.

42 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

•executable: When executable is given, the first item in the args sequence obtained from cmd is still treated
by most programs as the command name, which can then be different from the actual executable name. It
becomes the display name for the executing program in utilities such as ps.

•working_dir: the working directory to run the command in. If not provided, will default to the current
working directory.

•shell: if True, will run the command in the shell environment. False by default. warning: this is a security
hazard.

•uid: if given, is the user id or name the command should run with. The current uid is the default.

•gid: if given, is the group id or name the command should run with. The current gid is the default.

•env: a mapping containing the environment variables the command will run with. Optional.

•rlimits: a mapping containing rlimit names and values that will be set before the command runs.

•use_fds XXX

pid
Return the pid

stdout
Return the stdout stream

stderr
Return the stdout stream

send_signal(*args, **kw)
Sends a signal sig to the process.

stop(*args, **kw)
Terminate the process.

age()
Return the age of the process in seconds.

info()
Return process info.

The info returned is a mapping with these keys:

•mem_info1: Resident Set Size Memory in bytes (RSS)

•mem_info2: Virtual Memory Size in bytes (VMS).

•cpu: % of cpu usage.

•mem: % of memory usage.

•ctime: process CPU (user + system) time in seconds.

•pid: process id.

•username: user name that owns the process.

•nice: process niceness (between -20 and 20)

•cmdline: the command line the process was run with.

children()
Return a list of children pids.

is_child(pid)
Return True is the given pid is a child of that process.

5.9. Circus Library 43

Circus Documentation, Release 0.5.1

send_signal_child(*args, **kw)
Send signal signum to child pid.

send_signal_children(*args, **kw)
Send signal signum to all children.

status
Return the process status as a constant

•RUNNING

•DEAD_OR_ZOMBIE

•UNEXISTING

•OTHER

Example:

>>> from circus.process import Process
>>> process = Process(’Top’, ’top’, shell=True)
>>> process.age()
3.0107998847961426
>>> process.info()
’Top: 6812 N/A tarek Zombie N/A N/A N/A N/A N/A’
>>> process.status
1
>>> process.stop()
>>> process.status
2
>>> process.info()
’No such process (stopped?)’

class circus.watcher.Watcher(name, cmd, args=None, numprocesses=1, warmup_delay=0.0, work-
ing_dir=None, shell=False, uid=None, max_retry=5, gid=None,
send_hup=False, env=None, stopped=True, graceful_timeout=30.0,
prereload_fn=None, rlimits=None, executable=None, std-
out_stream=None, stderr_stream=None, stream_backend=’thread’,
priority=0, singleton=False, use_sockets=False, copy_env=False,
**options)

Class managing a list of processes for a given command.

Options:

•name: name given to the watcher. Used to uniquely identify it.

•cmd: the command to run. May contain $WID, which will be replaced by wid.

•args: the arguments for the command to run. Can be a list or a string. If args is a string, it’s splitted using
shlex.split(). Defaults to None.

•numprocesses: Number of processes to run.

•working_dir: the working directory to run the command in. If not provided, will default to the current
working directory.

•shell: if True, will run the command in the shell environment. False by default. warning: this is a security
hazard.

•uid: if given, is the user id or name the command should run with. The current uid is the default.

•gid: if given, is the group id or name the command should run with. The current gid is the default.

•send_hup: if True, a process reload will be done by sending the SIGHUP signal. Defaults to False.

44 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

•env: a mapping containing the environment variables the command will run with. Optional.

•rlimits: a mapping containing rlimit names and values that will be set before the command runs.

•stdout_stream: a mapping that defines the stream for the process stdout. Defaults to None.

Optional. When provided, stdout_stream is a mapping containing up to three keys:

–class: the stream class. Defaults to circus.stream.FileStream

–filename: the filename, if using a FileStream

–refresh_time: the delay between two stream checks. Defaults to 0.3 seconds.

This mapping will be used to create a stream callable of the specified class. Each entry received by the
callable is a mapping containing:

–pid - the process pid

–name - the stream name (stderr or stdout)

–data - the data

•stderr_stream: a mapping that defines the stream for the process stderr. Defaults to None.

Optional. When provided, stderr_stream is a mapping containing up to three keys: - class: the stream
class. Defaults to circus.stream.FileStream - filename: the filename, if using a FileStream - refresh_time:
the delay between two stream checks. Defaults

to 0.3 seconds.

This mapping will be used to create a stream callable of the specified class.

Each entry received by the callable is a mapping containing:

–pid - the process pid

–name - the stream name (stderr or stdout)

–data - the data

•stream_backend – the backend that will be used for the streaming process. Can be thread or gevent.
When set to gevent you need to have gevent and gevent_zmq installed. (default: thread)

•priority – integer that defines a priority for the watcher. When the Arbiter do some operations on all
watchers, it will sort them with this field, from the bigger number to the smallest. (default: 0)

•singleton – If True, this watcher has a single process. (default:False)

= use_sockets – XXX

•copy_env – If True, the environment in which circus had been run will be reproduced for the workers.

•options – extra options for the worker. All options found in the configuration file for instance, are passed
in this mapping – this can be used by plugins for watcher-specific options.

notify_event(topic, msg)
Publish a message on the event publisher channel

reap_processes(*args, **kw)
Reap all the processes for this watcher.

manage_processes(*args, **kw)
manage processes

reap_and_manage_processes(*args, **kw)
Reap & manage processes.

5.9. Circus Library 45

Circus Documentation, Release 0.5.1

spawn_processes(*args, **kw)
Spawn processes.

spawn_process()
Spawn process.

kill_process(process, sig=15)
Kill process.

kill_processes(*args, **kw)
Kill all the processes of this watcher.

send_signal_child(*args, **kw)
Send signal to a child.

stop(*args, **kw)
Stop.

start(*args, **kw)
Start.

restart(*args, **kw)
Restart.

reload(*args, **kw)

class circus.arbiter.Arbiter(watchers, endpoint, pubsub_endpoint, check_delay=1.0, pre-
reload_fn=None, context=None, loop=None, stats_endpoint=None,
plugins=None, sockets=None, warmup_delay=0, httpd=False,
httpd_host=’localhost’, httpd_port=8080, debug=False,
stream_backend=’thread’)

Class used to control a list of watchers.

Options:

•watchers – a list of Watcher objects

•endpoint – the controller ZMQ endpoint

•pubsub_endpoint – the pubsub endpoint

•stats_endpoint – the stats endpoint. If not provided, the circusd-stats process will not be launched.

•check_delay – the delay between two controller points (default: 1 s)

•prereload_fn – callable that will be executed on each reload (default: None)

•context – if provided, the zmq context to reuse. (default: None)

•loop: if provided, a zmq.eventloop.ioloop.IOLoop instance to reuse. (default: None)

•plugins – a list of plugins. Each item is a mapping with:

–use – Fully qualified name that points to the plugin class

–every other value is passed to the plugin in the config option

•sockets – a mapping of sockets. Each key is the socket name, and each value a CircusSocket class.
(default: None)

•warmup_delay – a delay in seconds between two watchers startup. (default: 0)

•httpd – If True, a circushttpd process is run (default: False)

•httpd_host – the circushttpd host (default: localhost)

•httpd_port – the circushttpd port (default: 8080)

46 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

•debug – if True, adds a lot of debug info in teh stdout (default: False)

•stream_backend – the backend that will be used for the streaming process. Can be thread or gevent.
When set to gevent you need to have gevent and gevent_zmq installed. All watchers will use this setup
unless stated otherwise in the watcher configuration. (default: thread)

start(*args, **kw)
Starts all the watchers.

The start command is an infinite loop that waits for any command from a client and that watches all the
processes and restarts them if needed.

reload(*args, **kw)
Reloads everything.

Run the prereload_fn() callable if any, then gracefuly reload all watchers.

numprocesses()
Return the number of processes running across all watchers.

numwatchers()
Return the number of watchers.

get_watcher(name)
Return the watcher name.

add_watcher(name, cmd, **kw)
Adds a watcher.

Options:

•name: name of the watcher to add

•cmd: command to run.

•all other options defined in the Watcher constructor.

5.10 The Plugin System

Circus comes with a plugin system which let you interact with circusd.

Note: We might add circusd-stats support to plugins later on

A Plugin is composed of two parts:

• a ZMQ subscriber to all events published by circusd

• a ZMQ client to send commands to circusd

Each plugin is run as a separate process under a custom watcher.

A few examples of some plugins you could create with this system:

• a notification system that sends e-mail alerts when a watcher is flapping

• a logger

• a tool that add or remove processes depending on the load

• etc.

Circus itself provides a few plugins:

5.10. The Plugin System 47

Circus Documentation, Release 0.5.1

• a statsd plugin, that sends to statsd all events emited by circusd

• the flapping feature which avoid to re-launch processes infinitely when they die too quickly.

• many more to come !

5.10.1 The CircusPlugin class

Circus provides a base class to help you implement plugins: circus.plugins.CircusPlugin

class circus.plugins.CircusPlugin(endpoint, pubsub_endpoint, check_delay, **config)
Base class to write plugins.

Options:

•context – the ZMQ context to use

•endpoint – the circusd ZMQ endpoint

•pubsub_endpoint – the circusd ZMQ pub/sub endpoint

•check_delay – the configured check delay

•config – free config mapping

call(command, **props)
Sends to circusd the command.

Options:

•command – the command to call

•props – keywords argument to add to the call

Returns the JSON mapping sent back by circusd

cast(command, **props)
Fire-and-forget a command to circusd

Options:

•command – the command to call

•props – keywords argument to add to the call

handle_recv(data)
Receives every event published by circusd

Options:

•data – a tuple containing the topic and the message.

handle_stop()
Called right before the plugin is stopped by Circus.

handle_init()
Called right befor a plugin is started - in the thread context.

When initialized by Circus, this class creates its own event loop that receives all circusd events and pass them to
handle_recv(). The data received is a tuple containing the topic and the data itself.

handle_recv() must be implemented by the plugin.

The call() and cast() methods can be used to interact with circusd if you are building a Plugin that actively
interacts with the daemon.

48 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

handle_init() and handle_stop() are just convenience methods you can use to initialize and clean up your
code. handle_init() is called within the thread that just started. handle_stop() is called in the main thread
just before the thread is stopped and joined.

5.10.2 Writing a plugin

Let’s write a plugin that logs in a file every event happening in circusd. It takes one argument which is the filename.

The plugin could look like this:

from circus.plugins import CircusPlugin

class Logger(CircusPlugin):

name = ’logger’

def __init__(self, filename, **kwargs):
super(Logger, self).__init__(**kwargs)
self.filename = filename
self.file = None

def handle_init(self):
self.file = open(self.filename, ’a+’)

def handle_stop(self):
self.file.close()

def handle_recv(self, data):
topic, msg = data
self.file.write(’%s::%s’ % (topic, msg))

That’s it ! This class can be saved in any package/module, as long as it can be seen by Python.

For example, Logger could be found in a plugins module in a myproject package.

5.10.3 Using a plugin

You can run a plugin through the command line with the circus-plugin command, by specifying the plugin fully
qualified name:

$ circus-plugin --endpoint tcp://127.0.0.1:5555 --pubsub tcp://127.0.0.1:5556 myproject.plugins.Logger
[INFO] Loading the plugin...
[INFO] Endpoint: ’tcp://127.0.0.1:5555’
[INFO] Pub/sub: ’tcp://127.0.0.1:5556’
[INFO] Starting

Another way to run a plugin is to let Circus handle its initialization. This is done by adding a [plugin:NAME] section
in the configuration file, where NAME is a unique name for your plugin:

[plugin:logger]
use = myproject.plugins.Logger
filename = /var/myproject/circus.log

use is mandatory and points to the fully qualified name of the plugin.

When Circus starts, it creates a watcher with one process that runs the pointed class, and pass any other variable
contained in the section to the plugin constructor via the config mapping.

5.10. The Plugin System 49

Circus Documentation, Release 0.5.1

You can also programmatically add plugins when you create a circus.arbiter.Arbiter class or use
circus.get_arbiter(), see Circus Library.

5.10.4 Performances

Since every plugin is loaded in its own process, it should not impact the overall performances of the system as long as
the work done by the plugin is not doing too many calls to the circusd process.

5.11 Deployment

This section will contain recipes to deploy Circus. Until then you can look at Pete’s Puppet recipe at
https://github.com/fetep/puppet-circus

This Puppet recipe also contains an upstart script you can reuse.

5.12 Security

Circus is built on the top of the ZeroMQ library and comes with no security at all.

There were no focus yet on protecting the Circus system from attacks on its ports, and depending on how you run it,
you are creating a potential security hole in the system.

This section explains what Circus does on your system when you run it, and a few recommandations if you want to
protect your server.

You can also read http://www.zeromq.org/area:faq#toc5

5.12.1 TCP ports

By default, Circus opens the following TCP ports on the local host:

• 5555 – the port used to control circus via circusctl

• 5556 – the port used for the Publisher/Subscriber channel.

These ports allow client apps to interact with your Circus system, and depending on how your infrastructure is or-
ganized, you may want to protect these ports via firewalls or to configure Circus to run using IPC ports. When
Configured using IPC, the commands must be run from the same box, but no one can access them from outside unlike
TCP.

5.12.2 uid and gid

By default, all processes started with Circus will be running with the same user and group than circusd. Depending
on the privileges the user has on the system, you may not have access to all the features Circus provides.

For instance, some statistics features on the running processes require privileges. Typically, if the CPU usage numbers
you get using the stats command are 0, it means your user can’t access the proc files.

You may run circusd as root, to fix this, and set the uid and gid values for each watcher to get all features.

But beware that running circusd as root exposes you to potential privilege escalation bugs. While we’re doing our best
to avoid any bug, running as root and facing a bug that performs unwanted actions on your system may be an issue.

50 Chapter 5. More documentation

https://github.com/fetep/puppet-circus
http://www.zeromq.org/area:faq#toc5

Circus Documentation, Release 0.5.1

The best way to prevent this is to make sure that the system running Circus is isolated (like a VM) or to run the whole
system under a controlled user.

5.12.3 circushttpd

The web application is not secured at all and once connected on a running Circus, it can do anything and everything.

Do not make it publicly available

If you want to protect the access to the web panel, you can serve it behind Nginx or Apache or any proxy-capable web
server, than can set up security.

5.12. Security 51

Circus Documentation, Release 0.5.1

5.13 Design

Circus is composed of a main process called circusd which takes care of running all the processes. Each process
managed by Circus is a child process of circusd.

Processes are organized in groups called watchers. A watcher is basically a command circusd runs on your system,
and for each command you can configure how many processes you want to run.

The concept of watcher is useful when you want to manage all the processes running the same command – like restart
them, etc.

circusd binds two ZeroMQ sockets:

• REQ/REP – a socket used to control circusd using json-based commands.

52 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

• PUB/SUB – a socket where circusd publishes events, like when a process is started or stopped.

Another process called circusd-stats is run by circusd when the option is activated. circusd-stats‘s job is to publish
CPU/Memory usage statistics in a dedicated PUB/SUB channel.

This specialized channel is used by circus-top and circus-httpd to display a live stream of the activity.

circus-top is a console script that mimics top to display all the CPU and Memory usage of the processes managed by
Circus.

circus-httpd is the web managment interface that will let you interact with Circus. It displays a live stream using web
sockets and the circusd-stats channel, but also let you interact with circusd via its REQ/REP channel.

Last but not least, circusctl is a command-line tool that let you drive circusd via its REQ/REP channel.

You can also have plugins that subscribe to circusd‘s PUB/SUB channel and let you send commands to the REQ/REP
channel like circusctl would.

5.14 Why should I use Circus instead of X ?

1. Circus simplifies your web stack process management

Circus knows how to manage processes and sockets, so you don’t have to delegate web workers managment to
a WGSI server.

See Circus stack v.s. Classical stack

2. Circus provides pub/sub and poll notifications via ZeroMQ

Circus has a pub/sub channel you can subscribe to. This channel receives all events happening in Circus.
For example, you can be notified when a process is flapping, or build a client that triggers a warning when
some processes are eating all the CPU or RAM.

These events are sent via a ZeroMQ channel, which makes it different from the stdin stream Supervisord
uses:

• Circus sends events in a fire-and-forget fashion, so there’s no need to manually loop through all
listeners and maintain their states.

• Subscribers can be located on a remote host.

Circus also provides ways to get status updates via one-time polls on a req/rep channel. This means you
can get your information without having to subscribe to a stream. The Command-line tools command
provided by Circus uses this channel.

See Examples.

3. Circus is (Python) developer friendly

While Circus can be driven entirely by a config file and the circusctl / circusd commands, it is easy to
reuse all or part of the system to build your own custom process watcher in Python.

Every layer of the system is isolated, so you can reuse independently:

• the process wrapper (Process)

• the processes manager (Watcher)

• the global manager that runs several processes managers (Arbiter)

• and so on. . .

4. Circus scales

5.14. Why should I use Circus instead of X ? 53

Circus Documentation, Release 0.5.1

One of the use cases of Circus is to manage thousands of processes without adding overhead – we’re
dedicated to focus on this.

5.15 Examples

The examples directory in the Circus repository contains a few examples to get you started.

Open a shell and cd into it:

$ cd examples

Now try to run the example1.ini config:

$ circusd example1.ini
2012-03-19 13:29:48 [7843] [INFO] Starting master on pid 7843
2012-03-19 13:29:48 [7843] [INFO] running dummy process [pid 7844]
2012-03-19 13:29:48 [7843] [INFO] running dummy process [pid 7845]
2012-03-19 13:29:48 [7843] [INFO] running dummy process [pid 7846]
2012-03-19 13:29:48 [7843] [INFO] running dummy process [pid 7847]
2012-03-19 13:29:48 [7843] [INFO] running dummy process [pid 7848]
2012-03-19 13:29:48 [7843] [INFO] running dummy2 process [pid 7849]
2012-03-19 13:29:48 [7843] [INFO] running dummy2 process [pid 7850]
2012-03-19 13:29:48 [7843] [INFO] running dummy2 process [pid 7851]

Congrats, you have 8 workers running !

Now run in a separate shell the listener script:

$ python listener.py

This script will print out all events happening in Circus. Try for instance to kill a worker:

$ kill 7849

You should see a few lines popping into the listener shell.

If you are brave enough, you can try the web socket demo with a web socket compatible browser. It will stream every
event into the web page.

54 Chapter 5. More documentation

Circus Documentation, Release 0.5.1

5.16 Circus Use Cases

This chapter presents a few use cases, to give you an idea on how to use Circus in your environment.

5.16.1 Running a WSGI application

Running a WSGI application with Circus is quite interesting because you can watch & manage your web workers
using circus-top, circusctl or the Web interface.

This is made possible by using Circus sockets. See Circus stack v.s. Classical stack.

Let’s take an example with a minimal Pyramid application:

from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
return Response(’Hello %(name)s!’ % request.matchdict)

config = Configurator()
config.add_route(’hello’, ’/hello/{name}’)
config.add_view(hello_world, route_name=’hello’)
application = config.make_wsgi_app()

Save this script into an app.py file, then install those projects:

$ pip install Pyramid
$ pip install chaussette

Next, make sure you can run your Pyramid application using the chaussette console script:

$ chaussette app.application
Application is <pyramid.router.Router object at 0x10a4d4bd0>
Serving on localhost:8080
Using <class ’chaussette.backend._waitress.Server’> as a backend

And check that you can reach it by visiting http://localhost:8080/hello/tarek

Now that your application is up and running, let’s create a Circus configuration file:

[circus]
check_delay = 5
endpoint = tcp://127.0.0.1:5555
pubsub_endpoint = tcp://127.0.0.1:5556
stats_endpoint = tcp://127.0.0.1:5557

[watcher:webworker]
cmd = chaussette --fd $(circus.sockets.webapp) app.application
use_sockets = True
numprocesses = 3

[socket:webapp]
host = 127.0.0.1
port = 8080

This file tells Circus to bind a socket on port 8080 and run chaussette workers on that socket – by passing its fd.

Save it to server.ini and try to run it using circusd

5.16. Circus Use Cases 55

http://docs.pylonsproject.org/projects/pyramid/en/latest/

Circus Documentation, Release 0.5.1

$ circusd server.ini
[INFO] Starting master on pid 8971
[INFO] sockets started
[INFO] circusd-stats started
[INFO] webapp started
[INFO] Arbiter now waiting for commands

Make sure you still get the app on http://localhost:8080/hello/tarek.

Congrats ! you have a WSGI application running 3 workers.

You can run the The Web Console or the Command-line tools, and enjoy Circus management.

5.16.2 Running a Django application

Running a Django application is done exactly like running a WSGI application.

Circus simply uses Chaussette’s ability to run Django applications. Instead of providing a fully qualified name for a
WSGI python, you provide the path to the Django application, by prefixing it with django::

$ chaussette django:path/to/mysite
Application is <pyramid.router.Router object at 0x10a4d4bd0>
Serving on localhost:8080
Using <class ’chaussette.backend._waitress.Server’> as a backend

Chaussette will look for your settings file automatically for you, or you can explicitely give it with the –django-settings
option:

$ chaussette django:path/to/mysite --backend gevent --django-settings mysite.settings
Application is <django.core.handlers.wsgi.WSGIHandler object at 0x10ec3f350>
Serving on localhost:8080
Using <class ’chaussette.backend._gevent.Server’> as a backend

See http://chaussette.readthedocs.org for more info on this.

5.17 Code coverage

Name Stmts Miss Cover Missing

/Users/tarek/Dev/github.com/circus/bin/bottle 1613 875 46% 25-36, 95-96, 117, 121, 129, 133, 160-161, 164-165, 191-193, 231-233, 236, 298, 301, 310, 320-322, 353-354, 373-374, 378-384, 403-404, 412-417, 420, 424-431, 465-468, 479, 483, 487-488, 512-514, 563-588, 597, 607-615, 622-623, 626, 631-633, 639, 643-645, 693, 697, 701, 705, 709-712, 716-719, 727-730, 740-749, 765, 776-780, 786-815, 828-829, 832-845, 892, 896, 902-904, 911-915, 923-927, 945-950, 969-973, 981-984, 1024, 1035-1036, 1057-1060, 1073, 1091-1092, 1106-1107, 1112, 1122-1126, 1134-1137, 1143-1144, 1148, 1158-1172, 1175, 1192-1193, 1196-1197, 1227-1228, 1232-1235, 1238, 1241-1242, 1247, 1257-1261, 1267-1269, 1295, 1300-1303, 1307, 1315, 1320-1321, 1324-1325, 1330, 1340, 1346-1349, 1384-1405, 1410-1412, 1415-1418, 1459-1462, 1485-1487, 1491-1494, 1504-1509, 1523, 1525-1526, 1528, 1548, 1551-1558, 1611-1613, 1621, 1625, 1649-1653, 1671, 1677-1679, 1697, 1701-1704, 1708, 1711, 1714, 1717, 1720-1724, 1745-1747, 1750-1754, 1757, 1760-1761, 1782-1784, 1787-1791, 1805, 1823-1858, 1874, 1879-1883, 1888-1895, 1901, 1906-1908, 1913-1918, 1923, 1928, 1934, 1948-1956, 1968-1987, 1995-2008, 2014-2022, 2052-2054, 2060-2061, 2114-2116, 2155-2161, 2167-2175, 2181-2183, 2194-2198, 2204-2216, 2222-2223, 2229-2231, 2237-2238, 2245-2249, 2292-2298, 2305-2312, 2332-2399, 2407-2410, 2413-2432, 2435, 2438-2440, 2453, 2473-2486, 2492-2499, 2504-2508, 2515, 2524, 2529-2537, 2540-2543, 2548-2555, 2558-2563, 2568-2578, 2581-2584, 2587-2590, 2596-2602, 2605-2615, 2627, 2637-2642, 2647-2650, 2654, 2658-2740, 2743-2746, 2749-2762, 2766-2769, 2779-2794, 2812-2822, 2909-2929
circus/__init__ 41 30 27% 1-36, 106-118, 124
circus/arbiter 189 36 81% 95-106, 116, 137-138, 164, 167-179, 211-212, 217, 237, 241-246, 251, 266, 309, 313, 324
circus/client 55 8 85% 17, 21, 49-50, 54-55, 60, 76
circus/commands/addwatcher 24 14 42% 1-66, 73, 78
circus/commands/base 72 55 24% 1-11, 19, 26, 35-79, 82, 86-97, 103-106
circus/commands/decrproc 17 14 18% 1-55, 60-63
circus/commands/dstats 24 23 4% 1-63, 66-81
circus/commands/get 25 19 24% 1-66, 76, 80-86
circus/commands/globaloptions 29 21 28% 1-73, 79-81, 93-99
circus/commands/incrproc 21 16 24% 1-53, 61-68
circus/commands/list 26 18 31% 1-54, 66-72
circus/commands/listsockets 13 10 23% 1-34, 40-45
circus/commands/numprocesses 19 17 11% 1-57, 59-60, 67-70
circus/commands/numwatchers 14 13 7% 1-42, 45-48
circus/commands/options 20 18 10% 1-101, 105-111
circus/commands/quit 7 6 14% 1-36

56 Chapter 5. More documentation

http://chaussette.readthedocs.org

Circus Documentation, Release 0.5.1

circus/commands/reload 17 15 12% 1-68, 70-71
circus/commands/restart 15 13 13% 1-56, 58-59
circus/commands/rmwatcher 12 10 17% 1-54
circus/commands/sendsignal 49 33 33% 1-123, 133, 135, 141-143, 148, 150, 156-163
circus/commands/set 34 22 35% 1-59, 70, 75
circus/commands/start 15 12 20% 1-53, 58
circus/commands/stats 49 41 16% 1-89, 93-99, 109-135
circus/commands/status 23 20 13% 1-65, 70-80
circus/commands/stop 12 8 33% 1-50
circus/commands/util 58 45 22% 1-38, 43, 47, 52, 55-56, 59-60, 64, 71-73
circus/config 130 49 62% 40-43, 70-71, 88-91, 107-119, 130-132, 135, 146, 151, 154, 157, 159, 164-192
circus/consumer 32 10 69% 24, 28-31, 35, 38-42
circus/controller 116 13 89% 75, 85-86, 94-96, 104, 118, 142, 145, 151, 156-157
circus/plugins/__init__ 140 101 28% 34-43, 47-55, 59-81, 85-93, 105-108, 118-119, 131, 136, 141, 149-160, 181-247, 251
circus/process 145 42 71% 3-9, 103-123, 158-163, 181, 199-200, 223-224, 230, 236, 242, 248-251, 256-261, 274-275, 279, 303
circus/py3compat 47 44 6% 1-38, 43-67
circus/sighandler 36 16 56% 34-44, 47, 50, 53, 56, 59
circus/sockets 54 13 76% 25, 42, 54-61, 70-71, 81
circus/stats/__init__ 40 27 33% 34-81, 85
circus/stats/client 153 119 22% 28-33, 46-146, 151-157, 160, 163-166, 170-209, 213
circus/stats/collector 111 43 61% 9-10, 32, 37, 42-62, 65, 69-71, 73-89, 115-116, 122, 135-136, 142-143, 146, 153, 160
circus/stats/publisher 25 18 28% 9-14, 17-28, 31-33
circus/stats/streamer 141 115 18% 20-38, 41, 44, 47-51, 55-56, 60-69, 72-97, 100-106, 109-120, 123-145, 151-175, 179-187
circus/stream/__init__ 50 14 72% 16, 29, 34, 37-38, 41, 50, 53-59, 91
circus/stream/base 64 14 78% 22, 39, 51, 58-59, 65, 69-77
circus/stream/sthread 19 1 95% 25
circus/util 249 107 57% 1-57, 61-79, 85-87, 93, 107, 114, 123, 126, 151, 161-162, 167, 171-174, 178-179, 185-186, 191, 193, 203, 212, 225, 233, 245, 253, 255, 259-268, 274-279, 283, 289-299, 316-317, 334, 339, 348, 385-387
circus/watcher 327 81 75% 142, 170, 180, 204, 230, 234, 244-245, 259-260, 263-264, 268, 285, 295, 311, 318, 347-348, 351-352, 359, 375-377, 389-391, 402-407, 413-418, 424-425, 435-436, 454, 483, 490, 501, 510-513, 520, 523, 526-528, 532-534, 539, 543, 565-566, 570, 573, 575-576, 578-579, 581-582, 584, 586-587, 591-596, 608
circus/web/__init__ 0 0 100%
circus/web/circushttpd 166 89 46% 14-15, 52, 62, 72, 80, 90, 98, 104, 113, 118, 136, 145-152, 157, 186-224, 235-237, 244-260, 274, 280-295, 324-345, 349-352
circus/web/controller 109 59 46% 9-11, 30, 48, 51, 55-56, 59-62, 65-66, 72-73, 76-78, 81-83, 86, 89-93, 96-97, 100-103, 106-114, 120-129, 132-141
base_html NoSource: No source for code: ’/Users/tarek/Dev/github.com/circus/docs/base_html’: [Errno 2] No such file or directory: ’/Users/tarek/Dev/github.com/circus/docs/base_html’
connect_html NoSource: No source for code: ’/Users/tarek/Dev/github.com/circus/docs/connect_html’: [Errno 2] No such file or directory: ’/Users/tarek/Dev/github.com/circus/docs/connect_html’
index_html NoSource: No source for code: ’/Users/tarek/Dev/github.com/circus/docs/index_html’: [Errno 2] No such file or directory: ’/Users/tarek/Dev/github.com/circus/docs/index_html’

TOTAL 4647 2387 49%

5.18 Glossary

arbiter The arbiter is responsible for managing all the watchers within circus, ensuring all processes run correctly.

controller A controller contains the set of actions that can be performed on the arbiter.

flapping The flapping detection subscribes to events and detects when some processes are constantly restarting.

process, worker, workers, processes A process is an independent OS process instance of your program. A single
watcher can run one or more processes. We also call them workers.

pub/sub Circus has a pubsub that receives events from the watchers and dispatches them to all subscribers.

remote controller The remote controller allows you to communicate with the controller via ZMQ to control Circus.

watchers, watcher A watcher is the program you tell Circus to run. A single Circus instance can run one or more
watchers.

5.18. Glossary 57

Circus Documentation, Release 0.5.1

5.19 Contributing to Circus

Circus has been started at Mozilla but its goal is not to stay only there. We’re trying to build a tool that’s useful for
others, and easily extensible.

We really are open to any contributions, in the form of code, documentation, discussions, feature proposal etc.

You can start a topic in our mailing list : http://tech.groups.yahoo.com/group/circus-dev/

Or add an issue in our bug tracker

5.19.1 Fixing typos and enhancing the documentation

It’s totally possible that your eyes are bleeding while reading this half-english half-french documentation, don’t hesitate
to contribute any rephrasing / enhancement on the form in the documentation. You probably don’t even need to
understand how Circus works under the hood to do that.

5.19.2 Adding new features

New features are of course very much appreciated. If you have the need and the time to work on new features, adding
them to Circus shouldn’t be that complicated. We tried very hard to have a clean and understandable API, hope it
serves the purpose.

You will need to add documentation and tests alongside with the code of the new feature. Otherwise we’ll not be able
to accept the patch.

5.19.3 How to submit your changes

We’re using git as a DVCS. The best way to propose changes is to create a branch on your side (via git checkout -b
branchname) and commit your changes there. Once you have something ready for prime-time, issue a pull request
against this branch.

We are following this model to allow to have low coupling between the features you are proposing. For instance, we
can accept one pull request while still being in discussion for another one.

Before proposing your changes, double check that they are not breaking anything! You can use the tox command to
ensure this, it will run the testsuite under the different supported python versions.

5.19.4 Discussing

If you find yourself in need of any help while looking at the code of Circus, you can go and find us on irc at #mozilla-
circus on irc.freenode.org (or if you don’t have any IRC client, use the webchat)

You can also start a thread in our mailing list - http://tech.groups.yahoo.com/group/circus-dev

5.20 How to add new commands in circus

If you want to add a new command, we tried to make this as simple as possible. You need to do three main things:

1. create a “your_command.py” file under circus/commands/.

2. Implement a single class in there, with predefined methods

58 Chapter 5. More documentation

http://tech.groups.yahoo.com/group/circus-dev/
https://github.com/mozilla-services/circus/
http://webchat.freenode.net/?channels=mozilla-circus&uio=d4
http://tech.groups.yahoo.com/group/circus-dev

Circus Documentation, Release 0.5.1

3. Add the new command in circus/commands/__init__.py.

Let’s say we want to add a command which returns the number of watchers actually in use, we would do something
like this (extensively commented to allow you to follow more easily):

class NumWatchers(Command):
"""It is a good practice to describe what the class does here.

Have a look at other commands to see how we are used to format this
text. It will be used to automatically appear in the documentation of
circus, so don’t be affraid of being exhaustive, that’s what it is made
for.
"""
all the commands need to inherit from ‘circus.commands.base.Command‘

name = "numwatchers"
you need to specify a name so we find back the command somehow

options = [(’’, ’optname’, default_value, ’description’)]
XXX describe options

properties = [’foo’, ’bar’]
properties list the command argments that are mendatory. If they are
not provided, then an error will be thrown

def execute(self, arbiter, props):
the execute method is the core of the command: put here all the
logic of the command and return a dict containing the values you
want to return, if any
return {"numwatchers": arbiter.numwatchers()}

def console_msg(self, msg):
msg is what is returned by the execute method.
this method is used to format the response for a console (it is
used for instance by circusctl to print its messages)
return "a string that will be displayed"

def validate(self, props):
this method is used to validate that the arguments passed to the
command are correct. An ArgumentError should be thrown in case
there is an error in the passed arguments (for instance if they
do not match together.
In case there is a problem wrt their content, a MessageError
should be thrown. This method can modify the content of the props
dict, it will be passed to execute afterwards.

5.21 Copyright

Circus was initiated by Tarek Ziade and is licenced under APLv2

Benoit Chesneau was an early contributor and did many things, like most of the circus.commands work.

5.21. Copyright 59

Circus Documentation, Release 0.5.1

5.21.1 Licence

Copyright 2012 - Mozilla Foundation
Copyright 2012 - Benoit Chesneau

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

5.21.2 Contributors

In order of appearence:

• Tarek Ziadé

• Benoit Chesneau

• Pratyk S. Paudel

• Neil Chintomby

• Ori Livneh

• Pete Fritchman

• Johan Charpentier

• John Morrison

• Chris McDonald

• Stefane Fermigier

• Adnane Belmadiaf

• Alexis Métaireau

• Christian S. Perone

60 Chapter 5. More documentation

CHAPTER

SIX

CONTRIBUTIONS AND FEEDBACK

More on contribution: Contributing to Circus.

Useful Links:

• There’s a maling list for any feedback or question: http://tech.groups.yahoo.com/group/circus-dev/

• The repository and issue tracker is at GitHub : https://github.com/mozilla-services/circus

• Join us on the IRC : Freenode, channel #mozilla-circus

61

http://tech.groups.yahoo.com/group/circus-dev/
https://github.com/mozilla-services/circus

